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Relevant and irrelevant nonlinear Schrodinger equations” 

N Gisin and M Rigo 
Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland 

Received 26 January 1995, in~final form 1 June 1995 

Abstract. First, we summarize the q u m e n t  against deterministic nonlinear Schriidinger 
equations. We recall that any such equation activates quantum non-locality in the sense that that 
information could be signalled in a finite time over arbitrarily large distances. Next we introduce 
a deterministic nonlinear Sckdinger  equation. We justify it by showing that it is closest, in a 
precise sense, to the master equations for mixed states used to describe the evolution of open 
quantum systems. We also illustrate some interesting properties of this equation. Finally, we 
show that this equation can avoid the signalling problem if one adds noise to it in a precise way. 
Cases of both discrete and continuous noise are inmduced.explicitly and related to the density 
operator evolution. The relevance for the classical limit of the obtdned stochastic equations is 
illustrated on a classically chaotic kicked anharmonic oscillator. 

1. Introduction 

Quantum mechanics is a linear theory. Physical quantities are represented by linear 
operators, and the evolution of quantum systems is represented by a linear dynamical 
equation for the onedimensional projector Pq that represent the state of the quantum system. 
It is good physics to hy to embed quantum mechanics into a wider nonlinear theory in such 
a way that an upper bound on the nonlinearities can be determined experimentally (see 
for instance [I]). However, the other fundamental theory of physics, relativity, cannot be 
ignored in such a program. Indeed, although compatible, quantum mechanics and relativity 
rely on such different concepts that their relation is strained. In particular, locality and 
determinism are basic for relativity, whereas quantum mechanics is incompatible with 
local deterministic hidden variables 121. This led Shimmy to introduce the terminology 
of ‘peaceful coexistence’ to describe the peculiar relation between relativity and quantum 
mechanics [3]. 

In the next section we recall that any deterministic nonlinear generalization of quantum 
mechanics breaks this peaceful coexistence: any deterministic nonlinear Schrodinger 
equation allows one to send signals in a finite time over arbitrarily large distances. Hence, 
even without experiment, one has good reasons to put an absolute bound of ‘zero’ on the 
amount of possible nonlinearities in~quantum mechanics! This fact led Weinberg to consider 
quantum mechanics as a part of the ‘final theory’ [4]. But, remembering that physics is an 
experimental science, we shall not ,follow Weinberg’s conclusion. It is perfectly possible 
that in the more or less near future quantum mechanics and relativity will both be embedded 
in a wider theory. Let us first stress that in addition to locality, another crucial concept in 
this reasoning is determinism. 

* A preliminary version of this paper was first presented at the intemational symposium on ‘Nonlinear, Dissipative. 
Irreversible Quantum Systems’ at Clausthal, August 1994. 
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Despite the negative conclusion of the first section, the second section of this paper 
presents a nonlinear Schrodinger equation. It is motivated by the fact that it is the nonlinear 
Schrodinger equation closest to the master equations for density operators that describe the 
evolution of open quantum systems. 

In section 4 we show how the nonlinear Schrodinger equation of section 3 can survive 
the arguments of section 2. The main idea is to drop determinism. This seems unavoidable 
to us. Moreover, it seems quite natural to base a theory well known for its stochastic 
character, like quantum mechanics, on a stochastic evolution equation [5]. The stochastic 
equations thus obtained are illustrated in several examples. In particular, in section 5 a 
classically chaotic system is considered and the relevance of the stochastic equation for the 
classical limit emphasized. 

2. All deterministic nonlinear Schrijdinger equations are irrelevant 

Let us consider a quantum system consisting of two spatially separated subsystems, labelled 
‘left’ and ‘right’. Let A and B be two non-commuting linear self-adjoint operators that 
represent two incompatible physical quantities of subsystem ‘left’ (i.e. A and B are two 
observables). Assume that the state of the system is described by a one-dimensional 
projector (pure state): P$ = 1$)($1. Assume that a physicist near subsystem ‘left’ decides 
to measure the physical quantity A, to record the result 01, then to destroy subsystem 
‘left’ (if it has not already been destroyed by the measurement). Subsystem ‘right’ clearly 
survives this operation and ends in a certain state. This state P$(a) depends on the results 
a. Let xff denote the probability of the result a. For a physicist near subsystem B who 
ignores the result a, but who knows the procedure carried out by his ‘left’ colleague, 
the state of subsystem ‘right’ is a classical mixture of state P&) with probabilities x,: 
p,ighr = ~ , x u P ~ ( o r ) .  By classical mixture we mean that the probabilities x, refer merely 
to ignorance, like statistical mixtures in classical statistical mechanics. Now, after some 
finite time f, the actual state of subsystem ‘right’ will evolve to P$(a, t).  Consequently the 
mixture evolves to: p,ighr(t) = C m x . P ~ ( a ,  t). 

Clearly, the ‘left’ physicist could also decide to measure the physical quantity E ,  instead 
of A, with possible results B that happen with probability y p  Now, if the corresponding 
two classical mixtures were distinguishable, then the ‘right’ physicist could determine which 
quantity, A or B,  the ‘left’ physicist has measured. Hence he could read a message sent by 
his colleague. Consequently, in order to avoid arbitrary fast signalling, one concludes that 
the two classical mixtures at the disposal of the ‘right’ physicist are indistinguishable: 

This is called parameter independence [6]. So far we have only used linear quantum 
mechanics. Next, notice that the ‘right’ physicist could let his subsystem evolve a finite 
time. If the evolution P9(01) + Pq(01,t) is linear, the two possible mixtures remain 
indistinguishable. But in nonlinear quantum mechanics the two mixtures may become 
distinguishable, ~ , x , P $ ( 0 1 ,  t) f: &ypP$(B, r ) ,  and the ‘right’ physicist could read a 
message sent by his colleague. Consequently, the equality (1) has to hold for all times t. 
This implies that the evolution P$ + P$(r) is linear 171. 

Finally, in 181 we have proven that any mixture that satisfies (I) can be prepared at a 
distance in the way described above. From this reasoning we conclude that any deterministic 
nonlinear Schrodinger equation has predictions in contradiction with relativity and is thus 
physically irrelevant (as long as a much wider revision of physics is not considered). The 
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above reasoning has been first sketched in [lo, 81, and applied to Weinberg’s nonlinear 
theory in 191. 

What did we really use as assumptions? Is the conclusion really inescapable? Several 
other authors have considered these questions and came to various.conclusions [I. 11-15]. 
Clearly, one could try to modify relativity, but this i s  outside our scope. It seems that there 
are three possible paths to follow: 

(i) Restrict the set of observables. In this way the density matrix would no 
longer represent the state of mixtures. Equality (1) would have to be replaced by 
E,x,E(BIP*(a)) = &ygE(0IP~ . ( f i ) )  for all observables 0, where E stands for the 
expectation value.. Then a similar argument would lead to the conclusion that the map 
E(OIPJ.) + E(elP*(t))  hai to be linear. 

(ii) One questionable point is the assumption that once aresult 01 is secured on the ‘left’, 
the subsystem ‘right’ is in the corresponding state Pq(a)t. But, if not, then there is the 
possibility to do a measurement on subsystem ‘right’ before its state is affected by the ‘left’ 
measurement result. And, in such a case, how could one explain that any measurement 
on subsystem ‘right’ is correctly correlated to ,the measurement on subsystem ‘left’? Note 
that in a many- world^ view, the arbitrary fast signalling problem of deterministic nonlinear 
Schrodinger equations is replaced by signalling among the many worlds [ll].  

(iii) Determinism is a hidden assumption in all derivations of the Schrodinger equation 
[16, 51. But if one takes seriously the idea that quantum physics is not deterministic, then 
the use of stochastic evolution equations is quite natural. The noise term in such an equation 
would represent the intrinsic non-determinism of Nature. This is the path we follow, and 
illustrate it in section 4. 

To conclude this section let us emphasize that it would not be enough to note that the 
nonlinear Schrodinger equations are not relativistic. Indeed, if such an equation is relevant 
for physics, a relativistic generalization must exist. The predictions of this generalization 
have to agree with the nonlinear Schrodinger equation whenever all velocities are small. 
This is precisely the case in the situation discussed above. Hence the generalization would 
suffer from the same contradiction. 

3. An interesting nonlinear Schrodinger equation 

Let & be the generator of a master equation, i.e. of an evolution equation for density 
operators pr: 

h = CPt. (2) 

For instance C could assume the Lindblad form: 

where H is the Hamiltonian of the system and the Lj are linear operators that take into 
account the effect of the environment and {. . . , . . .) denotes the anticommutator. The Bloch- 
type master equation (3) assumes a Markov approximation, which is widely used in many 
areas of physics. Note that this hypothesis imposes some restrictions which are discussed, 
for instance, in [17]. But this form is not necessary for the presentation of the nonlinear 
Schrodinger equation in this section. 

i Note that it may take a Knite time to secure the result U. The crucial point, however, is that once secured, the 
’right’ subsystem’s state has been affected, even if it is far away in space. 
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Figure 1. lllusuation of the relation between the 
density matrix evolution equation (2) and the nonlinear 
Schr6dinger equation (4) on the Poincad sphere for spin- 4 systems. The points on the sphere P, represent pure 
states, whereas the inner points p, label mixed states. The 
flow Sh re.presenu the evolution of density mauices. The 
corresponding nonlinear Schrodinger equation is obtained 
by projecting the Row Sp, onto the plane langent to the 
sphere: SP, = (P, A Sp,) A P,. Far operators, the vector 
product A vanslater into i times the commutator, see (A4). 
For simplicity only a section of the~sphere is shown. 

In this section we consider the following nonlinear Schrodinger equation which is 

(4) 
where (LP*,), = (@$P*,I@,), and P*, = I@,)(@,[ denotes the one-dimensional projector 
associated with the normalized vector q,. In terms of this projector, the above equation 
reads 

naturally associated to the master equation (2): 

4, = (LP*, - (LP*,),)@r 

Pb% = w*, 9 P*,l- 2p*r LP, p*, . (5)  
Equations (4) and (5)  are equivalent. It seems that their first presentation is due to 

Diosi [ I S ] .  Figure 1 illustrates in which sense this nonlinear Schrodinger equation is closest 
to the master equation (2): one projects the flow generated by (2) onto the manifold of pure 
states. In the appendix we make this more precise and derive the nonlinear Schrodinger 
equation (5).  

Let us have a closer look at the case where the sum in (3) reduces to one term with a 
self-adjoint environment operator, L, = A  at and where the Hamiltonian is neglected 

4, = G ( A  -at)*! - $(A2 - (A2)tWi (6)  
where a, = (A)* .  

Several comments are in order: 
(i) Equation (6) is truly nonlinear. By truly nonlinear we mean that the nonlinearity is 

(ii) Equation (6) is invariant under the shift A -+ A + A, where A is any real number. 

(iii) The recalling A + AA in equation (6) corresponds merely to a recalling of time. 
By reordering the terms in (6) one obtains 

not merely a normalization factor. 

(If A is imaginary, then this ‘shift’ produces a Hamiltonian term). 

, 

(7) 
This form of the equation shows that the solutions tend to minimize ( A  -a,)’. And, indeed, 
all the eigenstates of A are stabh stationary solutions of (7). Note that there are also some 
other stationary solutions, hut only the eigenstates are stable. 

The study of (4) is also interesting in the case of non-self-adjoint environment operators 
Lj. Consider, for instance, the case of a harmonic oscillator in a thermal bath L, = yla 

$r = - + ( ( A  -ai)’ - ( ( A  - ~ t ) ’ ) t ) @ z .  
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Figure 2. lllusmtion of the solution of~the nonlinear Schriidinger equation (4) in the case 
of a harmonic oscillator in a heat bath: H = ala,  L I  = Lz = a i a t  and initial 
state $0 = 13) + &(I!?) + 14)). The full C U N ~  represent the expectation values of position 
and momentum, while the broken CUNS represent the square ,of the comsponding standard 
deviations. Clearly the latter tend to their minimum value 4. Accordingly, the state tends to a 
coherent state. 

and Lz = n u t ,  where a and at are the usual annihilation and creation operators. In this 
case any initial state tends to a coherent state labelled by a complex number cr, = {a),. This 
complex number follows the equation 

Figure 2 illustrates this case with y~ = 62, yz = f i g  and a Hamiltonian H ~ =  at,. The 
full curves represent the expectation values of position and momentum, while the broken 
curves represent the squares of the corresponding standard deviations. Clearly, the latter 
tend to their minimum value i. 

A remarkable property of (4) is the following. For any Hamiltonian quadratic in a and 
at (that is, quadratic in,position and momentum), and any environment operators Lj linear 
in a and at (linear in position and momentum) and any initial condition, the solution of (4) 
corresponding to the Liouvilian (3) tends to a Gaussian state, that is a state of minimum 
uncertainty ApAq = $, known as squeezed states. 

Figure 3 illustrates the case of a linearly damped harmonic oscillator: H = o a f ,  + 
i$((at)’ - a’) and L1 = &a. According to the master equation (2): ( p )  = 
-o(q) - 2 k 2 { p )  and {q) = o ( p ) .  According to the nonlinear Schrodinger equation (4) 
the expectation values follow more complicated trajectories, but figure 3 illustrates that 
damping is clearly present. 

Figure 4 illustrates a pumped and damped nonlinear oscillator. In this case the state 
does not tend to a Gaussian state. 

The most fundamental difference between the master equation (2) and the nonlinear 
Schrodinger equation (4) is that the second one is deterministic, whereas the first one is 
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Figure 3. Same as figure Z but for a *early damped harmonic oscillator (Caldeira-Leggett- 
Di~simasIerequaIion[391): H = ~ ~ n + ~ ( ( n ~ ) ~ - a ~ ) ,  L I  = &uandinitials~~~te+o = 14)fijS). 

- t  I I I I I 
0 100 3w 400 500 ‘ofire 

Figure 4. Same a figure 2, but for a pumped and damped nonlinew Hamiltonian: X = 
ala + $(at)2a2 + i(nt - a ) ,  L I  = and initial swle $0 = 14). 

stochastic in the sense that it tuns pure states into mixed states. In the next section we 
shall see how to add randomness to the nonlinear Schrodinger equation in such a way as to 
recover the master equation. 
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4. How to make the interesting nonlinear Schrodinger equation relevant 

In this section we illustrate how discrete or continuous noise added to the nonlinear 
Schrodinger equation (4) presented in the previous section solves the problem posed in 
section 2, while keeping the most interesting properties of that equation. Actually we shall 
limit our discussion to the Markovian case (3). As we shall see, the main consequences 
are: 

(i) The evolved states averaged over the noise~reproduce exactly the original master 
equation (2). Since the noise cannot be controlled, the physicist has access only to the 
averaged state. Consequently, mixtures that are indistinguishable remain indistinguishable. 
The signalling problem, summarized in section 2, is thus avoided. 

(ii) The noise drives the system towards stable solutions. Depending on the Hamiltonian 
H and the environment operators Lj, the stable solutions may be, for instance, Gaussian 
states localized in phase space, or eigenvector, as in measurement situations. Accordingly, 
in a natural way the noise introduces a reduction of the wavefunction without an ad hoc 
postulate. 

(iii) The probabilities of reduction to an eigenstate are precisely equal to the probability 
of occurrence of the corresponding eigenvalue as predicted by quantum mechanics. 

(iv) The individual realizations provide a description of the evolution of individual open 
quantum systems. 

Let us first consider the case of discrete Poissonian noises dNj.r: 

dP*, = P*, dt + c(Pj.t - P*,) dNj., (9) 

where P*, is defined by (5). for f given by (3). For each time inmement dt, dNj,t = 0 or 1 
(0 or 1 jump happen). Hence the It3 table reads: dNj., dNk,* = 8j.k dNj,, and dNj,, dt = 0. 
Such a process is characterized by its mean value, denoted M dNj,,, proportional to dt which 
determines the probability density of the jumps: 

j 

X M d N j , ,  =-M(LP*r)dr. (10) 
j 

The intuitive meaning of equation (9) should be clear. Most of the time the dNj,l vanish 
and (9) is just the nonlinear Schrodinger equation presented in the previous section. From 
time to time one dNj,, takes the value one and dominates (9). This corresponds to a jump 
P$z -+ P;.t (the probability that more than one dNj., takes the value one is negligible). Note 
that states onto which the system can jump, Pj.*, depend on the actual state P$,, hence on 
time. 

M a p ,  = M(ILP*,,P*,I-~PJ, .CP, P$r)dt+xM(Pj . tdNj. t )  - x M d N j . t  P,dt 

One can now compute the mean of (9): 

i i 
= MLP*,ddr +zM(Pj . , dNj , , )  - Rdt 

J 

where the operator R is defined as: R = M ( l  - P*,)fP*,(l - P*r). Consequently, the 
original master equation (2 )  is recovered provided that the last two terms cancel each other: cj M(P,.,dNj,,) = Rdr. In words, the mixture of states Pj.? with weights MdNj,,/dt 
corresponds to the non-normalized ‘density matrix’ R. If L1 assumes the Lindblad form (3), 
the operator R is always positive and the above construction is well defined. In that case 
one can, following Di6si [IS, 191, assume the Pj., orthogonal to each other and thus obtain 
a unique jump process associated with any Lindblad master equation. Note, however, that 
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Figure 5. Same as figure 2, but for the stochastic jump (9). Two jumps are clearly displayed. 

- 1 -  

-2- I I 1 I 

Figure 6. Same as figure 3, but for the stochastic jump (9). 

for some peculiar cases, in particular for non-Markovian master equation, the operator R is 
not necessarily positive and this con~struction does not work. 

Figures 5-7 illustrate solutions of the stochastic jump in equation (9) for the same 
systems as considered for the nonlinear Schrodinger equation in figures 2 4 ,  respectively. 
Only a few jumps happen, but they are just enough to supplement the deterministic nonlinear 
Schrodinger equation (4) with the randomness necessary to be compatible with the density 
operator evolution. In the case of the nonlinear oscillator this randomness speeds up the 
localization. 
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Figure 7. Same as figure 4, but for the stochastic jump (9). Note that localization is faster than 
in the deterministic case. 

This stochastic process, called the ‘orthogonal jump process’ by Didsi [18,19], has 
recently been rediscovered by Milburn and co-workers [20] in the context of optimum 
quantum measurement (i.e. that requiring the least information to keep track of the system). 
Note that it is different from the jump process introduced by Carmichael [21] and by 
Dalibard and co-workers 1221 under the name ’Monte Carlo wavefunction’. 

In the case of a Lindblad master equation with a single environment operator L, the 
stochastic equation (9) takes the following form, in terms of the normalized state vector @,: 

d@r = (Lt)h(L - (L)q,)@tdf - &(LtL - (L’L)@,)@tdt 

Accordingly, the nonlinear Schrodinger~evolution is interrupted from time to time, with a 
mean frequency MdN, = ((LtL)q, - (Lt)q2(L)p,)dr. During these intemptions the state 
vector 1/1, jumps to the orthogonal vector (L - (L)$,)$rc. 

We consider now the case of continuous Gaussian noises t j , t>  for master equations of 
the Lindblad form (3): 

d ~ $ ,  = p*, dt + x ( X j f # ,  0 gj.r + pq,~! 0 (11) 
j 

where the Xj are nonlinear operators and the circle in front of the de’., indicates that (1 1) 
is a Stratonovich stochastic equation [23]. From~ a practical point of view ‘Stratonovich 
stochastic equation’ means that the usual rule of ordinary analysis can be applied. But, in 
order to compute mean values, the It8 form of stochastic equations is~more convenient. 
Indeed, in the latter form the stochastic increments gj., are ‘non-anticipating’, hence 
M(X@j.,) = 0 for all X. The Stratonovich and It8 equations are related through the 
simple rule: X o dY = X dY + f dX dY (where the lack of circle implies the It8 form). 
Consequently,.since the master equation (2) is quadratic in the environment operators Lj, 
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the Xj must be linear in the Lj. Moreover, since the trace of P+, is constant, the expectation 
values of the Xj must vanish. Hence 
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xj = Lj - (Lj)*>. 

dqr = $r dt + C ( L j  - (Lj)$,)+t 0 d6j.r 

(12) 
Note that a possible multiplicative constant could be absorbed in the dfj.r. The corresponding 
stochastic evolution equation for the normalized state vector qr reads 

(13) 
j 

where $rt is given by (4). A straightforward computation shows that the mean, MP*,, of 
the pure states P* over the noises tj.* follows the master equation (Z), provided the db., 
are complex Wiener processes of zero mean and correlations: 

M(dtj.r d h r )  = 0 M(Gir d h r )  = 8j.k dt . (14) 
The equations (13) and (14) describe a continuous evolution similar to Brownian motion, 

but in Hilbert space. The dissipation, described by the nonlinear Schrodinger equation, and 
the fluctuation balance each other in such a way that the mean values follow precisely the 
evolution corresponding to the master equation. It has been first introduced in [24, 251. 
Similar equations, but with real Wiener processes, were presented in [8,18, 26281. More 
general equations, mixing Gaussian and Poissonian noise, can also be constructed. 

In [25] we emphasized the use of (13) for practical computations based on a Monte Carlo 
algorithm. We proved general localization theorems and illustrated the physical picture and 
insight provided by this state diffusion model. Finally, let us mention some applications 
and tests of the model: 

(i) in 1291 QSD is used to describe a quantum jump experiment; 
(ii) in [30] QSD is applied to some nonlinear optical processes: 
&) in 1311 QSO and quantum jump simulations are compared for two-photon processes; 
(iv) in [32] the ‘phase space picture’ of QSD and quantum jumps are compared: 
(v) in [33] the approach to thermal equilibrium of harmonic oscillators is investigated 

(vi) in [34] QSD is applied to an open angular system, such as a quantum capacitor or 

(vii) in [35, 361 some preliminary results on the relation to quantum chaos are presented; 
(viii) in [37] some explicit solutions are presented; 
(ix) in [38] the Heisenberg picture is investigated, and algorithms for multi-time 

expectation values and correlation functions are presented. Note that all the constructions 
presented in the present paper, i.e. deterministic equation, continuous Gaussian noise, 
orthogonal jump process, can also be carried out for the transition operators considered 
in [381. 

Figures 8-10 present sample solutions of the stochastic equation (13) for the same 
cases as illustrated for the deterministic cases in figures 24, respectively. The solutions are 
clearly similar, but the additional noise corrects precisely the defects of the deterministic 
case. For instance the harmonic oscillator in a heat bath at finite temperature (figures 2 and 
8) is damped down to the ground state in the deterministic case, whereas in the stochastic 
case it keeps oscillating around the ground state, as it should for a physical model of  an 
oscillator at finite temperature. Comparing figures 4 and 10 which present a nonlinear 
oscillator is also instructive: the noise has two effects. First it localizes the oscillator state 
in phase space, next it keeps the state away from a non-physical stationary solution. 

The relation between the stochastic equation presented in this section and the master 
equation (3) is unique [41]. Indeed the assumption of continuous Markovian diffusion leads 

numerically: 

rotor; 
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Figure 8. Same as figure 2. but for the c0ntin"ous stochastic equation (13). Note thaf the state 
$, tends also to a coherent state, bur that the latter fluctuates forever, as it should since the 
temperature is finite. 

- ,  I 
0 5 10 15 20 

Time 

Figure 9. Same as figure 3, but for the continuous stochastic equation (13). Note that the state 
$, tends also to a Gaussian state, but that the latter fluctuaes forever. On average, one has 
linear damping: M ( j )  = - M ( q )  - b M ( p )  and M ( q )  = M ( p ) .  

to equation (13), whereas piecewise continuous trajectories lead to equation (9). Hence 
classical ensembles of pure state trajectories (continuous or not) are uniquely associated to 
the solution of the master equation (3) (given the initial condition). This is in sharp contrast 
to the kinematic case, as there are many classical ensembles of pure states corresponding 
to a given density matrix. 
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Figure 10. Same as figure 4, but for the continuous stochastic equation (13). Nole that 
localization is much faster than in the deterministic case or the jump case, but that the sm *, 
never reacher a stationary shape (it keeps breathing]. 

In this section we saw that nonlinear Schrodinger equations can be made much more 
interesting and relevant to physics by taking into account’the fluctuations that are well 
known to accompany dissipation. 

5. Quantum chaos and the classical limit 

Most classical dynamical systems have chaotic regions in’ the phase space, at least for 
some values of the parameters. In contrast, quantum systems do not exhibit chaos, at least 
in the usual sense of exponential sensitivity to initial conditions. This is a difficulty for 
the correspondence principle and for the classical limit [40]. Now, since both stochastic 
equations presented in the previous section do have localizkd wavefunctions as solutions, 
one may expect that the Ehrenfest theorem applies and that, whenever the localization is 
strong enough, the localized stochastic wavefunctions exhibit chaos. This phenomenon 
of localization has been investigated in [25,43]. In 1421 Percival argued that the localized 
quantum states do ‘appear to classical eyes like phase space points’. Recently, Spiller nicely 
illustrated that phenomenon on a simple kicked anharmonic oscillator [35]. The classical 
system is known to have a strange attractor, whereas the density matrix (not surprisingly) 
exhibits no chaos [a]. Now, the solutions ofthe continuous stochastic equation (13) exhibit 
the strange attractor, see figure 13 (this figure is very similar to the one obtained by Spiller, 
we include it for completeness and because it has been obtained with independent software 
on a PC). Clearly, the attractor appears with some cloudiness, but this was to be expected 
for a quantum system. Also the periodic point around (-5.88, 5.88) appears, with random 
transitions between it and the attractor. Spiller’s example is a beautiful illustration of the 
insight that stochastic wavefunctions can provide, in particular with the connection to the 
classical limit. 

Figures 11 and 12 present the kicked anharmonic oscillator as described by the nonlinear 
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Figure 11. The nonlinear Schrrjdinger equation (4) adplied to the kicked anharmonic oscillator: 
X = 0.0C4(at)zn2 + F(r)i(a+ - a ) ,  L = 4% where F ( t )  is a periodic step function taking 
value 0 for periods of 5 time units and value 2 for periods of length 4.9. The time increment was 
chosen as 0.01. the initial state was the gmund state of the (unkicked) oscillator. The Hilbett 
space was truncated to 56 dimensions with a moving basis formed by the eigenemes of the 
harmonic oscillators Ino) to lnof55). every 20 time steps no was adapted to the actual quantum 
state. A Poincarb section (of period 9.9) is shown. This figure is indistinguishable from the 
strange attractor obtained from the corresponding classical dynamical equations [35]. 

IC 
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-10 
.~ ~ 

1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1  
-8 -6 . 4  -2 0 2 4 6 
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Figure 12. Same as figure 11, but for the stochastic jump (9) applied to the kicked anharmonic 
oscillator. The smge amactor and the fixed point both appear quite clearly, with random 
transitions between them. For this example only, the truncation at 56 dimensions was insufficient; 
we used a dimension of 160. 
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5 i 

Figure U. Same as figure 1 I, but for the continuous stochastic equation (13) applied to the 
kicked anhmonic oscillator. The strange attractor and the fixed point both a p p w  quite clearly, 
with random transitions between them. 

Schrodinger equation (4) and the stochastic jump equation (9). respectively. In the 
deterministic case, the attractor appears particularly clearly. The periodic point is there too 
(though it is not displayed). This should not surprise the careful reader, since a maximally 
localized state (in phase space) is a coherent state ]at)  for which the noise term in (4) 
vanishes: (a- (a)u,)la,) =O.  Similarly, for the jump equation (9) the probability of ajump 
vanishes for coherent states. Note that at finite temperature the noise term never vanishes. 

Consequently, the strange attractor of the classical kicked anharmonic oscillator is 
obtained within the quantum state diffusion model in the classical limit. 

6. Conclusion 

First, we summarized the argument based on quantum non-locality against nonlinear 
Schrodinger equations. This argument is based on the concept of preparation at a distance: 
the possibility to prepare different mixtures of pure states while acting only on a ‘sister 
system’ at a distance. The different mixtures correspond to the same density operator, but a 
nonlinear Schrodinger equation would allow one to distinguish among them. We emphasize 
that the projection postulate plays little role in this argument: only some form of reduction 
is assumed. If one assumes that there is no reduction at all, one enters the ‘universe’ of 
‘many worlds’ in which the argument translates into ‘communications between different 
world components’ (whatever that means in a completely deterministic physics). 

Next, we considered open quantum systems. With the aim of describing individual 
open systems we derived and studied the nonlinear Schrodinger equation closest to the 
usual master equation for density operators commonly used in the quantum theory of open 
systems. 

Finally, we emphasized that noise can be added in natural ways to this nonlinear 
Schrodinger equation. In this way we recover the master equation as the mean of random 
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pure states. Hence the predictions of quantum mechanics for open systems are recovered, 
while keeping a description of individual systems. Moreover, we saw that the correct 
classical limit obtains for a chaotic kicked anharmonic oscillator. 
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Appendix 

In this appendix we show that the nonlinear Schrodinger equation presented in section 3 is 
indeed closest to the master equation (2). Let SP, denote the change of the one-dimensional 
projector representing the state of the system over a small time increment 6r.  By 'closest' 
we mean that 

Tr((Lp6t - SP,)') is minimum. (AI) 
In addition to minimizing the above trace, 6P# has also to satisfy some conditions in 
order that P, +SP& is still a one-dimensional projector (i.e. Pi = P, Pz = P and 
Tr(P) = 1). These additional conditions imply that there is a self-adjoint operator X such 
that 6Pq = [P,, [P,, XI]. After some algebra, one obtain for the expression (Al) the 
convenient form 
Tr((Lp6r)') - Tr(((2LpSt - X, X})P,) + 2Tr(XP$)Tr((2LpGr - X)P,). 

Tr((Cp8t)') - Z(Tr((LpSt)*P,) - Tr(Lp6tP,)') + 2(Tr(YzP,) - Tr(YP+)*). 
This expression is minimum whenever the operator Y admits 1/1 as an eigenvector. 
Consequently 

(A2) 

(A31 

Now, define Y = Lp6t - X. The expression (A2) simplifies further: 

SP, = [P$. [P,, Lpll6t (-44) 
which indeed corresponds to the nonlinear Schrodinger equation (5). 
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